The correct option is B 1x−1−1x+1+3(x+1)2−3(x+1)3+2(x+1)4
Let, y=5x3+6x2+5x(x2−1)(x+1)3
y=5x3+6x2+5x(x+1)(x−1)(x+1)3
y=5x3+6x2+5x(x−1)(x+1)4
Now, 5x3+6x2+5x(x−1)(x+1)4=Ax−1+Bx+1+C(x+1)2+D(x+1)3+E(x+1)4
5x3+6x2+5x=A(x+1)4+B(x−1)(x+1)3+C(x−1)(x+1)2+D(x−1)(x+1)+E(x−1)⟶1
⇒ Put x=−1
−5+6−5=E(−1−1)⇒E=2
⇒ Put x=1
5+6+5=A(x+1)4⇒A=1
⇒ Compare co efficient of x4 , we get
A+B=0⇒B=−1
⇒ Compare co eff. of x3, we get
4A+2B+C=5⇒C=3
⇒ Put x=0
A−B−C−D−E=0
D=A−B−C−E=1+1−3−2=−3=D
∴y=1x−1−1x+1+3(x+1)2−3(x+1)3+2(x+1)4