Let y=x2+1x(x2−1)
x(x2−1)=x(x+1)(x−1)
Let y=x2+1x(x2−1)=Ax+Bx+1+Cx−1
∴x2+1=A(x+1)(x−1)+Bx(x−1)+Cx(x+1)
At x=0,02+1=−A+0+0
∴A=−1
At x=1,12+1=0+0+2C
∴C=1
At x=−1,(−1)2+1=0+B(−1)(−2)+0
∴B=1
x2+1x(x2−1)=−1x+1x+1+1x−1
Sum of the coefficients areA+B+C=1