Resolve into partial fractions 23x−11x2(2x−1)(9−x2)
A
1(2x−1)+−1(3−x)+4(3+x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−1(2x−1)+−1(3−x)+4(3+x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4(2x−1)+−1(3−x)+1(3+x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1(2x−1)+−1(3−x)+4(3+x) We know 23x−11x2(2x−1)(9−x2)=23x−11x2(2x−1)(3−x)(3+x) Let 23x−11x2(2x−1)(x−3)(x+3)=A(2x−1)+B(3−x)+C(3+x) .....(1) 23x−11x2=A(3−x)(3+x)+B(2x−1)(3+x)+C(2x−1)(3−x)23x−11x2=A(9−x2)+B(2x2+5x−3)+C(−2x2+7x−3) On comparing coefficients we get −11=−A+2B−2C,23=5B+7C,0=9A−3B−3C Solving them we get A=1,B=−1 and C=4
Putting this values in equation (1), we get
23x−11x2(2x−1)(x−3)(x+3)=1(2x−1)+−1(3−x)+4(3+x) Hence, option 'A' is correct.