The correct option is B xx2+1+2x−2+1x−1
Let 4x3−7x2+5x−4(x2+1)(x2−3x+2)=Ax+Bx2+1+Cx−2+Dx−1
⇒4x3−7x2+5x−4=(Ax+B)(x−2)(x−1)+C(x2+1)(x−1)+D(x2+1)(x−2)⇒4x3−7x2+5x−4=A(x3−3x2+2x)+B(x2−3x+2)+C(x3−x2−x−1)+D(x3−2x2+x−2)
On comparing coefficients we get
A+C+D=4,−3A+B−C−2D=−7,2A−3B−C+D=5,2B−C−2D=−4⇒A=1,B=0,C=2,D=1
Hence
4x3−7x2+5x−4(x2+1)(x2−3x+2)=xx2+1+2x−2+1x−1
Hence, option 'C' is correct.