The correct option is B −6(x+2)+6(x+1)−5(x+1)2+3(x+1)3
Let x2+2(x+1)3(x−2)=A(x+1)+B(x+1)2+C(x+1)3+D(x−2)
⇒(x2+2)=A(x+1)2(x−2)+B(x+1)(x−2)+C(x−2)+D(x+1)3
⇒x2+2=A(x3−x−2)+B(x2−x−2)+C(x−2)+D(x3+3x2+3x+1)
On comparing we get
A+D=0,B+D=1,−A−B+C+3=0,−2A−2B−2C+D=2⇒A=6,B=−5,C=3,D=−6
Hence
x2+2(x+1)3(x−2)=6(x+1)−5(x+1)2+3(x+1)3−6(x−2)
Hence, option 'B' is correct.