Since x2+2 can not be factored
So, 2x2+3x+4(x−1)(x2+2)=Ax−1+Bx+Cx2+2
Now cross multiply, 2x2+3x+4=A(x2+2)+(Bx+C)(x−1)
⇒2x2+3x+4=A(x2+2)+Bx2−Bx+Cx−C
⇒2x2+3x+4=(A+B)x2+(C−B)x+(2A+C)
Comparing the coefficients, A+B=2.....(1),C−B=3......(2) and 2A−C=4.......(3)
Adding the three equations, we get
3A=9⇒A=3
From (1), A+B=2⇒3+B=2⇒B=−1
From (3), 2A−C=4⇒6−C=4⇒C=2
A=3,B=−1,C=2
Hence,
2x2+3x+4(x−1)(x2+2)=3x−1+−x+2x2+2