(a) At 20.00C, the unstretched lengths of the steel and copper wires are
Ls(20.00C)=(2.000m)[1+(11.0×10−60C−1)(−20.00C)]
=1.99956m
Lc(20.00C)=(2.000m)[1+(17.0×10−60C−1)(−20.00C)]
=1.99932m
Under a tension F, the length of the steel and copper wires are
L′s=Ls[1+FYa]s and L′c=Lc[1+FYa]c
where L′s+L′c:=4.000m
Since the tension F must be the same in each wire, we sol ve for F:
F=(L′s+L′c)−(Ls+Lc)Ls/YsAs+Lc/YcAc
When the wires are stretched, their areas become
As=π(1.000×10−3m)2[1+(11.0×10−60C−1)(−20.0)]2
=3.140×10−6m2
Ac=π(1.000×10−3m)2[1+(17.0×10−60C−1)(−20.0)]2
=3.139×10−6m2
Recall Ys=20.0×1010Pa and Yc=11.0×1010Pa. Substituting into the equation for F, we obtain
F=[4.000m−(1.99956m+1.99932m)]×11.99956m(20.0×1010Pa)(3.140×10−6)m2+1.99932m(11.0×1010Pa(3.139×10−6))m2
F=125N
(b) To find the x coordinate of the junction,
L′s=(1.99956m)[a6125N(20.0×1010N/m2)(3.140×10−6m2)]
=1.999958m
Thus the x coordinate is −2.000+1.999958=−4.20×10−5m