The correct option is B ±icot(π5),±icot(2π5)
(z+1)5=(z−1)5
⟹(z+1z−1)5=1=cos0+isin0=cis(0)
⟹z+1z−1=(cis(0))15=cis2kπ5 ...{De Moivre's Theorem}
Where is k=0,1,2,3,4
⟹z=cis2kπ5+1cis2kπ5−1=coskπ5[coskπ5+isinkπ5]sinkπ5[icoskπ5−sinkπ5]
z=−icotkπ5
fork=0,z is not defined.
for k=1,2,3,4
z=−icotπ5,−icot2π5,−icot3π5,−icot4π5⟹z=±icotπ5,±icot2π5
Ans: B