Roots of the equation is x4−2x3+x=380.
Given, x4−2x3+x=380
⇒x4−2x3+x2−x2+x=380
⇒(x2−x)2−(x2−x)=380
Put x2−x=t
⇒t2−t=380⇒t2−t−380=0⇒t2−20t+19t−380=0⇒t(t−20)+19(t−20)=0⇒(t+19)(t−20)=0⇒t=−19,20⇒x2−x=t
For t=−19, w ehave
x2−x=−19⇒x2−x+19=0
Using quadratic formula
x=1±√1−4(19)2=1±√−752
For t=20, we have
x2−x=20⇒x2−x−20=0⇒x2−5x+4x−20=0⇒x(x−5)+4(x−5)=0⇒(x+4)(x−5)=0⇒x=−4,5
So, the values of x are 1+√−752,1−√−752,−4 and 5.