The correct option is C S1 is false and S2 is true
Let g(x) be the inverse function of f(x).
Then,
f(g(x))=x
f′(g(x))⋅g′(x)=1
i.e. g′(x)=1f′(g(x))
∴g′′=−1(f′(g(x)))2⋅f′′(g(x))⋅g′(x)
In S1:upward concave,f′′>0
⇒f′′(g(x))>0
and g′(x)>0 (f(x)is increasing so g(x))
⇒g′′(x)<0
⇒ Concavity of f−1(x) is downwards.
∴S1 is False
In S2:f′′(g(x))>0
and g′(x)<0 (f(x)is decreasing so g(x))
⇒g′′(x)>0
⇒ Concavity of f−1(x) is upwards.
∴S2 is True.