The correct option is C 12
Let the equation of ellipse be x2a2+y2b2=1 (a>b)
Coordinates of S and T are (ae,0) and (−ae,0) respectively.
Length ST=2ae
Area of equilateral △STB is,
√34(side)2=√34(2ae)2
Also, area =12×base×height
=12×(2ae)×b
Equating both areas, we get
b=√32(2ae)
Squaring both sides
⇒b2=3(ae)2
⇒b2=3(a2−b2) [∵e2=1−b2a2]
⇒4b2=3a2
⇒b2a2=34
∴e2=1−b2a2=1−34=14
⇒e=12