The correct option is C 13n−1
S=n∑r=0(−1)r nCr(23)r+n∑r=0(−1)r nCr(89)r +n∑r=0(−1)r nCr(2627)r+...∞
n∑r=0(−1)r nCr(23)r=(1−23)n=(13)n=13n
n∑r=0(−1)r nCr(89)r=(1−89)n=(19)n=132n
n∑r=0(−1)r nCr(2627)r=(1−2627)n=(127)n=133n
∴ S=13n+132n+133n+...∞
This is a geometric progression where
a=13n,r=13n
S=13n1−13n=13n−1