    Question

# Sachin, Sehwag and Dhoni together scored 228 runs. Their individual scores are in G.P. Sehwag and Dhoni together scored 12 runs more than Sachin. Find their individual scores.

Open in App
Solution

## Let the runs made by Sachin, Sehwag and Dhoni be $\frac{a}{r}$, a and ar, respectively. Thus, we have: $\frac{a}{r}$ + a + ar = 228 …(1) Sehwag and Dhoni together scored 12 runs more than Sachin. Thus, we have: a + ar = $\frac{a}{r}$ + 12 $⇒$ a + ar – $\frac{a}{r}$ = 12 …(2) On subtracting (2) from (1), we get: $\frac{a}{r}$+ a + ar – a – ar + $\frac{a}{r}$ = 228 – 12 = 216 $⇒$$\frac{2a}{r}$ = 216 $⇒$ a = 108r On putting a = 108r in (1), we get: $\frac{108r}{r}+108r+108{r}^{2}=228\phantom{\rule{0ex}{0ex}}⇒108\left[1+r+{r}^{2}\right]=228\phantom{\rule{0ex}{0ex}}⇒1+r+{r}^{2}=\frac{19}{9}\phantom{\rule{0ex}{0ex}}⇒r+{r}^{2}=\frac{10}{9}$ On using the quadratic formula, we get: $r=\frac{-1±\sqrt{1-4×1×\left(\frac{-10}{9}\right)}}{2\left(1\right)}\phantom{\rule{0ex}{0ex}}=\frac{-1±\sqrt{1+\frac{40}{9}}}{2}\phantom{\rule{0ex}{0ex}}=\frac{-1±\sqrt{\frac{49}{9}}}{2}\phantom{\rule{0ex}{0ex}}=\frac{-1±\frac{7}{3}}{2}\phantom{\rule{0ex}{0ex}}=\frac{-3±7}{6}\phantom{\rule{0ex}{0ex}}=\frac{-10}{6}\mathrm{and}\frac{4}{6}\phantom{\rule{0ex}{0ex}}=\frac{-5}{3}\mathrm{and}\frac{2}{3}$ For r = $\frac{-5}{3}$, we have: a = 108 × $\frac{-5}{3}$ = $-$180 < 0 The value cannot be negative. For r =$\frac{2}{3}$, we have: a = 108 × $\frac{2}{3}$ = 72 Thus, we have: $\frac{a}{r}=\frac{72}{\frac{2}{3}}=\frac{72×3}{2}=108\phantom{\rule{0ex}{0ex}}a=72\phantom{\rule{0ex}{0ex}}ar=72×\frac{2}{3}=48$ Therefore, Sachin scored 108 runs, Sehwag scored 72 runs and Dhoni scored 48 runs.  Suggest Corrections  0      Similar questions  Related Videos   Algebraic Solution
MATHEMATICS
Watch in App  Explore more