Let r be the radius and h be the height of the cone
Given:
h=r6
Volume of cone,
V=13πr2h
⇒V=13π(6h)2h [∵h=r6]
⇒V=12πh3
Given,
dVdt=12 cm3/s
⇒ddt(12πh3)=12
⇒12πddt(h3)=12
⇒ddt(h3)=1π
⇒3h2dhdt=1π
⇒dhdt=13πh2
When
h=4 cm
dhdt=13π(4)2
∴dhdt=148π cm/s
Therefore, the height of the sand cone is increasing at the rate of
148π cm/sec