sec2[cot−1(12)]+cosec2[tan−1(13)]=
10
15
20
25
sec2[cot−1(12)]+cosec2(tan−1(13)) =1+tan2(cot−1(12))+cot2(tan−1(13)) =1+[tan(tan−12)]2+1+[cot(cot−13)]2 =2+22+32 =15
Prove:
(i)sin2θ+11+tan2θ=1
(ii)11+tan2θ+11+cot2θ=1