wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sec2xtany dy+sec2ytanx dx=0

Open in App
Solution

Consider the following Equation.

sec2xtanydy+sec2ytanxdx=0

tanxsec2xdx=tanysec2ydy

u=1sec2x

dx=sec2x2tanxdu


Similarly,

v=1sec2y

dy=sec2y2tanydv


Therefore,

tanxsec2xsec2x2tanxdu=tanysec2ysec2y2tanydv

121du=121dv

u2=v2+C

12sec2x=12sec2y+C

cos2x+cos2y=2C


Hence, this is the correct answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon