wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sec6Atan6A=1+3tan2A+3tan4A

Open in App
Solution

GivenLHS=sec6Atan6A.

W.K.Ta3b3=(ab)(a2+ab+b2)

=(sec2Atan2A)((sec2A)2+sec2Atan2A+tan4A)

W.K.Tsec2θ=1+tan2θ(or)sec2θtan2θ=1.

=(1)((sec2A)2+(1+tan2A)(tan2A)+(tan4A)

=(sec2A)2+(1+tan2A)(tan2A)+(tan4A)

=(1+tan2A)2+(1+tan2A)(tan2A)+(tan4A)

=(1+tan2A)[(1+tan2A)+tan2A]+tan4A

=(1+tan2A)(1+2tan2A)+tan4A

=1+2tan2A+tan2A+2tan4A+tan4A

=1+3tan2A+3tan4A

LHS=RHS.



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon