The correct option is B 1
(secθ−cosθ)2=sec2θ+cos2θ−2(secθ)(cosθ)(cossecθ−sinθ)2=cosec2θ+sin2θ−2(cosecθ)(sinθ)(cotθ−tanθ)2=cot2θ+tan2θ−2(cotθ)(tanθ)(secθ−cosθ)2+(cosecθ−sinθ)2−(cotθ−tanθ)2=(sec2θ+cos2θ−2)+(cosec2θ+sin2θ−2)−(cot2θ+tan2θ−2)
In the RHS of the equation,
(secθ)(cosθ)=1, (cosecθ)(sinθ)=1 and (cotθ)(tanθ)=1
(secθ−cosθ)2+(cosecθ−sinθ)2−(cotθ−tanθ)2=(sec2θ−tan2θ)+(sin2θ +cos2θ)+(cosec2θ−cot2θ)−2−2+2
∵(sec2θ−tan2θ) =1, (sin2θ +cos2θ)=1 and (cosec2θ−cot2θ)=1
⇒(secθ−cosθ)2+(cosecθ−sinθ)2−(cotθ−tanθ)2 =1+1+1− 2
∴(secθ−cosθ)2+(cosecθ−sinθ)2−(cotθ−tanθ)2=1