wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Seg AD is the median of ABC and AM BC.
Prove that:
i) AC2=AD2+BC×DM+BC24

ii) AB2=AD2BC×DM+BC24

77483_251ad66ff0e149e8ab86764363b30604.png

Open in App
Solution

i) InΔAMC,
AC2=AM2+CM2 [By Pythagoras Theorem]....(i)
InΔAMD,
AD2=AM2+DM2 [By Pythagoras Theorem]....(ii)
AM2=AD2DM2
AC2=[AD2DM2]+CM2
AC2=AD2DM2+(DC+DM)2
=AD2DM2+DC2+2DC.DM+DM2
=AD2+DC2+2DC.DM
=AD2+(BC2)2+2BC2DM
AC2=AD2+BC.DM+BC24

ii) From ABM
AB2=AM2+BM2
From AMD,
AM2=AD2DM2
AB2=[AD2DM2]+BM2
BM2=(BCDCDM)2
(abc)2=a2+b2+c22ab+2bc2ac
AB2=AD2DM2+[BC2+DC22(BC×DC)+2(DC×DM)2(BC×DM)]
Put DC=DC2
AB2=AD2+BC2+BC242BC22+2(BC2×DM)2(BC×DM)
AB2=AD2+BC24(BC×DM)

938822_77483_ans_1c44faa05c6e498aa22c3d9aae3f8678.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Median
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon