i)
InΔAMC,AC2=AM2+CM2 [By Pythagoras Theorem]....(i)
InΔAMD,
AD2=AM2+DM2 [By Pythagoras Theorem]....(ii)
∴AM2=AD2−DM2
⇒AC2=[AD2−DM2]+CM2
AC2=AD2−DM2+(DC+DM)2
=AD2−DM2+DC2+2DC.DM+DM2
=AD2+DC2+2DC.DM
=AD2+(BC2)2+2BC2DM
AC2=AD2+BC.DM+BC24
ii) From △ABM
AB2=AM2+BM2
From △AMD,
⇒AB2=[AD2−DM2]+BM2
∴BM2=(BC−DC−DM)2
(a−b−c)2=a2+b2+c2−2ab+2bc−2ac
AB2=AD2−DM2+[BC2+DC2−2(BC×DC)+2(DC×DM)−2(BC×DM)]
Put DC=DC2
∴AB2=AD2+BC2+BC24−2BC22+2(BC2×DM)−2(BC×DM)
⇒AB2=AD2+BC24−(BC×DM)