The correct option is B x+2 is a factor of x3+3x2+5x+6
Factor theorm states if p(x) is a polynomial of degree n≥1 and a is any real number then x–a is a factor of p(x), if and only if p(a)=0
The zero of x+2 is –2.
Let p(x)=x3+3x2+5x+6
⇒p(–2)=(−2)3+3(−2)2+5(−2)+6
=–8+12–10+6=0
Thus, By Factor Theorem, x+2 is a factor of x3+3x2+5x+6.
Again, let s(x)=x2+3x+4
⇒s(−2)=4−6+4≠0
Hence, not a factor
let q(x)=x4−4x3+3x2+5x+6
⇒q(−2)=16+32+12−10+6≠0
Hence, not a factor
Simialrly let r(x)=2x2+4
⇒r(−2)=8+4≠0
Hence, not a factor