The correct option is C [B]=k1[A]0k1+k2(1−e−(k1+k2)t)
The overall net rate of consumption of A or net rate reaction
=−d[A]dt=−(d[A]dt)1+(−d[A]dt)2d[A]dt=k1[A]+k2[A]d[A]dt=[k1+k2][A]d[A]dt=koverall[A]Where=koverall = k1+k2
Integrating Eq. (i), we get
[A]=[A]0e−(k1+k2)t
Also, from the rate equation:
d[B]dt=k1[A] and d[C]dt=k2[A]
Substituting the value of [A] (t) in the differential equation for [B] and [C] and integrating, we get
[B]=[B]0+∫t0k1[A]0e−(k1+k2)t)dt
[B]=k1[A](k1+k2)(1−e−(k1+k2)t), since[B]0=0