Semi latus rectum of the parabola y2=4ax, is the _____ mean between segments of any focal chord of the parabola.
Harmonic
Standard parabola
y2=4ax is given
Length of latus rectum =4a
Semi latus rectum=2a
Let the coordinates of P be (at21,2at1)) and Q((at22,2at2)
PS=√(a−at21)2+(2at1−0)2=a(1−t21)2+4at21
PS=√a2(1+t21)2=a(1+t21)
SQ=√(a−at22)2+(2at2−0)2=√a(1−t22)2+4at22
=√a2(1+t22)2=a(1+t22)
Segment of the focul chord SP & SQ.
We need tha AM,GM and HM of these segments
Let's calculate HM
HM=2(SP)(SQ)SP+SQ=2a(1+t21)×a(1+t22)a(1+t21)+a(1+t22)
=2a2(1+t21)(1+t22)a(1+t21+1+t22)
=2a(1+t21)(1+t22)2+t21+t22) ............(1)
Here, equation of focal chord
y−y1=y2−y1x2−x1(x−x1)
y=2at1=2at2−2at1at22−at21(x−at21)
this passes through focus (a,0)
0−2at1=2(t2−t1)(t2−t1)(t2+t1)(a−at21)
−2at1=2t1+t2a(1−t21)
−t1=1−t21t1+t2
−t21−t1.t2=1−t21
t2=−1t1
Substituting t2=−1t1 in equation (1)
HM=2a(1+t21)(1+1t21)2+t21+1t21
=2a(1+t21)(1+t21)t212t21+t41+1t21
=2a(1+t21)2(t21+1)2=2a= Semi latus rectum
So, semi latus rectum of the parabola y2=4ax is the harmonic
mean between segments of any focal chord of parabola.
Similarly, we can try for AM & GM. We will find that it won't satisfy
the given condition of the question.