Set of values of x in (0,π) satisfying 1 +log2sinx +log2sin3x≥0 is
x∈[π6,π4]∪[3π4,5π6]
1 + log2sinx +log2sin3x≥0
∴sinx>0, x ∈ (0,π) and
sin3x>0, 3x ∈ (0,π)∪(2π,3π) ⇒ x∈(0,π3)∪(2π3,π) ... (1)
1 + log2sinx +log2sin3x≥0
⇒ log22 + log2sinx +log2sin3x≥0 ⇒ log2(2sinxsin3x)≥0
⇒ 2sinxsin3x≥1
⇒ 2sinx(3sinx−4sin3x)≥1
⇒ 6sin2x−8sin4x≥1
⇒ 6sin2x−8sin4x−1≥0 ⇒ 8sin4x−6sin2x+1≤0
⇒ (2sin2x−1)(4sin2x−1)≤0
⇒ (sinx−1√2)(sinx+1√2)(sinx−12)(sinx+12)≤0
Using wavy curver method we get that 12≤sinx≤1√2 and
−1√2≤sinx≤−12.
But sinx>0.
Hence 12≤sinx≤1√2
∴ x∈(π6,π4)∪(3π4,5π6) ... (2)
From (1) and (2)
x∈(π6,π4)∪(3π4,5π6)