wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Shew that (a+b+c)34(b+c)(c+a)(a+b)+5abc=0 is the eliminant of ax2+by2+cz2=ax+by+cz=yz+zx+xy=0.

Open in App
Solution

From the first two equations;-
c(ax2+by2)=c2z2=(ax+by)2
a(a+c)x2+2abxy+b(b+c)y2=01
From the third equation;-
z=xyx+y;
Also
cz=(ax+by)
So, ax+by=cxyx+y
x2(a+bc)xy+by2=02
From 1 & 2 we obtain by
Cross multiplication
=x2b(bc)(abc)=xyab(ab)=y2a(ac)(ab+c)
Hence the eliminant is
a2b2(ab)2=ab(ac)(bc)(abc)(ab+c);
ab(ab)2=(ac)(bc)(abc)(ab+c)
ab(ab)2={ab(a+b)c+c2}{(ab)2c2}
Crossing the term ab(ab)2 on each side and dividing by 'c', we have
(a+b)(a+b)2(ab)2c+abc(a+b)c2+c2=0
i.e., a2+b2+c2b2cc2abc2a2cb2bb2a+3abc=0
a3=(a+b+c)33a2b6abc
a2b=(b+c)(c+a)(a+b)2abc
Hence the eliminant is
{(a+b+c)33(b+c)(c+a)(a+b)}{(b+c)(c+a)(a+b)2abc}+3abc=0
(a+b+c)34(b+c)(c+a)(a+b)=5abc

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inequalities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon