From the first two equations;-
c(ax2+by2)=−c2z2=−(ax+by)2
∴a(a+c)x2+2abxy+b(b+c)y2=0⟶1
From the third equation;-
z=−xyx+y;
Also
cz=−(ax+by)
So, ax+by=cxyx+y
∴x2(a+b−c)xy+by2=0⟶2
From 1 & 2 we obtain by
Cross multiplication
=x2b(b−c)(a−b−c)=xy−ab(a−b)=y2a(a−c)(a−b+c)
Hence the eliminant is
a2b2(a−b)2=ab(a−c)(b−c)(a−b−c)(a−b+c);
ab(a−b)2=(a−c)(b−c)(a−b−c)(a−b+c)
ab(a−b)2={ab−(a+b)c+c2}{(a−b)2−c2}
Crossing the term ab(a−b)2 on each side and dividing by 'c', we have
(a+b)(a+b)2−(a−b)2c+abc−(a+b)c2+c2=0
i.e., a2+b2+c2−b2c−c2a−bc2−a2c−b2b−b2a+3abc=0
∑a3=(a+b+c)3−3∑a2b−6abc
∑a2b=(b+c)(c+a)(a+b)−2abc
Hence the eliminant is
{(a+b+c)3−3(b+c)(c+a)(a+b)}−{(b+c)(c+a)(a+b)−2abc}+3abc=0
(a+b+c)3−4(b+c)(c+a)(a+b)=5abc