Let the equation to the circle passing through the focus be r=2Rcos(θ−Φ) .....(1)
so that its center will be (R,Φ)
As the circle touches the given conic r=l1−ecosθ
at the point where θ=α, we have
l1−ecosθ=2Rcos(α−Φ) ....(2)
Now as the center of circle lies on the normal at any point on it, hence the point (R,Φ) must lie on the normal θ=α
So, sin(θ−α)−esinϕ=−esinα1−ecosαlR
⇒sin(α−ϕ)+esinϕ=esinα1−ecosαlR
=esinα1−ecosα2Rcos(α−ϕ)(1−ecosα)R
=e.2sinαcos(α−ϕ)
Hence, sin(α−ϕ)+esinϕ=e[sinϕ−sin(ϕ−2α)]
⇒sinαcosϕ−cosαsinϕ=e[sinϕcos2α−cosϕsin2α]
⇒cosϕ(sinα−esin2α)=sinϕ(cosα−ecos2α)
⇒sinϕsinα−esin2α=cosϕcosα−ecos2α .....(3)
Eliminating R from 1 and 2 we get
Eliminating ϕ from (4) by relation (3), we get
l{cosθ(cosα−ecos2α)+sinθ(sinα−esin2α)}=r(1−ecosα)2
⇒lcos(θ−α)−elcos(θ−2α)=r(1−ecosα)2