The correct option is A √133−1
Equationofnormaltoy2=x3atanypoint(t2,t3)isy−t3=−23t(x−t2)willpassesthrough[0,159]i.e.,centreofthecircle53−t3=−23t(−t2)
3t3+2t−5=0⇒t=1
⇒ point corresponding to shortest distance (1, 1)
shortestdistance=distancefrom(1,1)tocentreofcircleradius
=√1+49−1=√133−1