wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show ∣ ∣ ∣βγβγ+βγβγγαγα+γαγααβαβ+αβαβ∣ ∣ ∣=(αβ+αβ)(βγβγ)(γα+γα).

Open in App
Solution


Let Δ=∣ ∣ ∣βγβγ+βγβγγαγα+γαγααβαβ+αβαβ∣ ∣ ∣
Taking βγ,γα,αβ commons from R1,R2 and R3 respectively, then
Δ=(βγ)(γα)(αβ)∣ ∣ ∣ ∣ ∣ββγγββ+γγ1γγααγγ+αα1ααββαα+ββ1∣ ∣ ∣ ∣ ∣
Applying R2R2R1 and R3R3R1
then
Δ=(αβγ)2∣ ∣ ∣ ∣ ∣ββγγββ+γγ1γγ(ααββ)(ααββ)0ββ(ααγγ)(ααγγ)0∣ ∣ ∣ ∣ ∣
=(αβγ)2(ααββ)(ααγγ)∣ ∣ ∣ ∣ ∣ββγγββ+γγ1γγ10ββ10∣ ∣ ∣ ∣ ∣Expanding along C3
Δ=(αβγ)2(αβαβ)αβ(αγαγ)αγ(γγββ)
=(αβγ)(αβαβ)(αγαγ)(γβγβ)(αβγ)2
Δ=(αβαβ)(βγβγ)(γαγα)

Hence Proved


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon