wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show by the mathematical induction that
1sin2x+1sin4x+1sin2nx=cotxcot2nx

Open in App
Solution

cot A - cot B = sin(BA)sinAsinBFor p (1) L. H. S. = 1sin2x

R. H. S. = cot x - cot 2x = sin(2xx)sinxsin2x=1sin2x

Thus p(1) is holds goods assume p(n) is true for all
p(n + 1) = p(n) + 1sin2n+1x

= p(n) + sin2nxsin2nxsin2n+1x= p(n) + sin(2n+12n)xsin2nxsin2n+1x

= (cotxcot2nx)+(cot2ncot2n+1x)

=cotxcot2n+1x

Thus the p(n + 1) alos goods holds .

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon