wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show graphically that the following given systems of equations has infinitely many solutions:
2x+3y=64x+6y=12

Open in App
Solution

From the first equation, write y in terms of x
y=6-2x3 .....i
Substitute different values of x in (i) to get different values of y
For x=-3, y=6+63=4For x=3, y=6-63=0For x=6, y=6-123=-2
Thus, the table for the first equation (2x + 3y = 6) is
x −3 3 6
y 4 0 −2

Now, plot the points A(−3,4), B(3,0) and C(6,−2) on a graph paper and join
A, B and C to get the graph of 2
x + 3y = 6.
From the second equation, write y in terms of x
y=12-4x6 .....ii
Now, substitute different values of x in (ii) to get different values of y
For x=-6, y=12+246=6For x=0, y=12-06=2For x=9, y=12-366=-4
So, the table for the second equation (4x + 6y = 12 ) is
x −6 0 9
y 6 2 −4

Now, plot the points D(−6,6), E(0,2) and F(9,−4) on the same graph paper and join
D, E and F to get the graph of 4x + 6y = 12.




From the graph it is clear that, the given lines coincide with each other.
Hence, the solution of the given system of equations has infinitely many solutions.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Equation of a Line Parallel to Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon