wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that 12+(12+22)+(12+22+32)+........ upto n terms =n(n+1)2(n+2)12,nN

Open in App
Solution

Formuale being used:

ni=1i=n(n+1)2

ni=1i2=n(n+1)(2n+1)6

ni=1i3=n2(n+1)24

Given,

12+(12+22)+(12+22+32)+..............+(12+22+32+........+n2)

=ni=1(12+22+32+........+i2)

=ni=1ij=1j2

=ni=1i(i+1)(2i+1)6

=ni=12i3+3i2+i6

=ni=113i3+nj=112j2+nk=116k

=13(n2(n+1)24)+12(n(n+1)(2n+1)6)+16(n(n+1)2)

=n2(n+1)2+n(n+1)(2n+1)+n(n+1)12

=n(n+1)[n(n+1)+(2n+1)+1]12

=n(n+1)(n2+3n+2)12

=n(n+1)2(n+2)12

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon