checkn3−(n−1)3=n3−[n3−3n2+3n−1]=3n2−3n+1∴13−03=3×12−3×1+123−13=3×22−3×2+133−23=3×32−3×3+1.........n3−(n−1)3=3×n2−3×n+1n3=3(12+22+....+n2)−3(1+2+...+n)+norn3+3(1+2+.....+n)−n=3(12+22+....+n2)n3+3(n(n+1)2)−n=3(12+22+....+n2)n[(2n2+3n+3−22)]=3(12+22+....+n2)(n(n+1)(2n+1)2)=3(12+22+...+n2)∴12+22+.....+n2=(n(n+1)(2n+1)6)