2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard IX
Mathematics
Multiplication of Surds
Show that:1 ...
Question
Show that:
(1)
√
a
2
+
b
=
a
+
b
2
a
+
b
2
a
+
⋯
,
(2)
√
a
2
−
b
=
a
−
b
2
a
−
b
2
a
−
⋯
.
Open in App
Solution
(
1
)
√
a
2
+
b
=
a
+
(
√
a
2
+
b
−
a
)
=
a
+
b
√
a
2
+
b
+
a
√
a
2
+
b
+
a
=
2
a
+
(
√
a
2
+
b
−
a
)
=
2
a
+
b
√
a
2
+
b
+
a
and so on
∴
√
a
2
+
b
=
a
+
b
2
a
+
b
2
a
+
.
.
.
(
2
)
√
a
2
−
b
=
a
−
(
a
−
√
a
2
−
b
)
=
a
−
b
a
+
√
a
2
−
b
a
+
√
a
2
−
b
=
2
a
−
(
a
−
√
a
2
−
b
)
=
2
a
−
b
a
+
√
a
2
−
b
and so on
∴
√
a
2
−
b
=
a
−
b
2
a
−
b
2
a
−
.
.
.
Therefore, hence showed.
Suggest Corrections
0
Similar questions
Q.
a
−
b
a
+
1
2
(
a
−
b
a
)
2
+
1
3
(
a
−
b
a
)
3
+
=
…
Q.
(
a
−
b
)
a
+
1
2
(
a
−
b
a
)
2
+
1
3
(
a
−
b
a
)
3
+
.
.
.
.
.
is
Q.
∫
x
2
d
x
(
a
+
b
x
)
2
=
Q.
Factorize:
(a − b + c)
2
+ (b − c + a)
2
+ 2(a − b + c) (b − c + a)