According to AM -GM Inequality,
AM≥GM
That is arithematic mean is greater than equal to geometric mean.
(y+z−x)+(z+x−y)+(x+y−z)3>((y+z−x)(z+x−y)(x+y−z))13
(x+y+z)3>((y+z−x)(z+x−y)(x+y−z))13
((x+y+z)3)3>((y+z−x)(z+x−y)(x+y−z))
(x+y+z)327>((y+z−x)(z+x−y)(x+y−z))
(x+y+z)3>27(y+z−x)(z+x−y)(x+y−z)
(y+z−x)+(z+x−y)2>√(y+z−x)(z+x−y)
(y+z−x)+(y+x−z)2>√(y+z−x)(y+x−z)
(y+x−z)+(z+x−y)2>√(y+x−z)(z+x−y)
2z2>√(y+z−x)(z+x−y)
z>√(y+z−x)(z+x−y)
y>√(y+z−x)(y+x−z)
x>√(y+x−z)(z+x−y)
Multiply the above three equation, we get
xyz>√(y+z−x)2(z+x−y)2(x+y−z)2
xyz>(y+z−x)(z+x−y)(x+y−z)