2sin−1(35)−tan−1(1731)=π4
Using formula, 2sin−1x=cos−1(1−2x2)
2sin−1(35)=cos−1[1−2(35)2]
=cos−1[25−1825]=cos−1725
Let, x=cos−1725
cosx=725
tanx=√(25)2−727=247
x=tan−1(247)
∴2sin−1(35)=tan−1(247)
∴ LHS =tan−1(247)−tan−1(1731)
tan−1x−tan−1y=tan−1(x−y1+xy)
=tan−1⎡⎢
⎢
⎢⎣247−17311+247×1731⎤⎥
⎥
⎥⎦
=tan−1[24×31−7×177×31+17×24]
=tan−1[744−119217+408]=tan−1[625625]
=tan−1(1)
=π4