wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that 2tan1(3)=π2+tan1(43).

Open in App
Solution

LHS=2tan1(3)=2tan13 [ tan1(x)=tan1 x, x R]=[cos11321+32] [ 2tan1 x=cos11x21+x2,x0]=[cos1(810)]=[cos1(45)]=[πcos1(45)] { cos1(x)=πcos1 x, x[1, 1]}=π+cos1(45)[let cos1(45)=θ cos θ=45 tan θ =34 θ =tan134]=π+tan1(34)=π+[π2cot1(34)]=π2cot134=π2tan143=π2+tan1(43) [ tan1(x)=tan1 x]=RHS Hence proved.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon