wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that 2tan1{tanα2tan(π4β2)}=tan1(sinαcosβcosα+sinβ)

Open in App
Solution

L.H.S=tan12tanα2tan(pi4β2)1tan2α2tan2(pi4β2)(since2tan1x=tan12x1x2)
=tan12tanα21tanβ21+tanβ21tan2α2⎜ ⎜ ⎜1tanβ21+tanβ2⎟ ⎟ ⎟2
=tan12tanα2(1tanβ2)(1+tanβ2)2tan2α2(1tanβ2)2
=tan12tanα2(1tanβ2)(1+tanβ2)(1tanα2)+2tan2β2(1+tanα2)
=tan12tanα21tan2β21+tan2α21+tan2β21tan2α21+tan2α22tanβ21+tan2β2
=tan1(sinαcosβcosα+sinβ)=R.H.S


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon