wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that 2tan1{tanα2×tan{π4β2}}=tan1{sinαcosβcosα+sinβ}

Open in App
Solution

Consider the L.H.S.

2tan1{tana2.tan{π4β2}}

We know that,

tan(AB)=tanAtanB1+tanAtanB

Then,

2tan1⎪ ⎪ ⎪⎪ ⎪ ⎪tanα2⎜ ⎜ ⎜tanπ4tanβ21+tanπ4tanβ2⎟ ⎟ ⎟⎪ ⎪ ⎪⎪ ⎪ ⎪

=2tan1⎪ ⎪ ⎪⎪ ⎪ ⎪tanα2⎜ ⎜ ⎜1tanβ21+tanβ2⎟ ⎟ ⎟⎪ ⎪ ⎪⎪ ⎪ ⎪

=2tan1⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪sinα2cosα2⎜ ⎜ ⎜1sinβ2cosβ2⎟ ⎟ ⎟⎜ ⎜ ⎜1+sinβ2cosβ2⎟ ⎟ ⎟⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪

=2tan1⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪sinα2cosα2(cosβ2sinβ2)(cosβ2+sinβ2)⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪

Let x=⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪sinα2cosα2(cosβ2sinβ2)(cosβ2+sinβ2)⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪

Using formula,

2tan1x=tan12x1x2


Therefore,

=tan12⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪sinα2cosα2(cosβ2sinβ2)(cosβ2+sinβ2)⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪1⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪sinα2cosα2(cosβ2sinβ2)(cosβ2+sinβ2)⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪2

=tan12⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪sinα2cosα2(cosβ2sinβ2)(cosβ2+sinβ2)⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪cos2α2(cosβ2+sinβ2)2sin2α2(cosβ2sinβ2)2cos2α2(cosβ2+sinβ2)2

=tan12sinα2(cosβ2sinβ2)cosα2(cosβ2+sinβ2)cos2α2(cos2β2+sin2β2+2cosβ2sinβ2)sin2α2(cos2β2+sin2β22cosβ2sinβ2)

=tan12sinα2cosα2(cos2β2sin2β2)cos2α2(1+sinβ)sin2α2(1sinβ)


Since, 2sinA2cosA2=sinA

cos2A2sin2A2=cosA

Therefore,

=tan1sinαcosβcos2α2+cos2α2sinβsin2α2+sin2α2sinβ

=tan1sinαcosβ(cos2α2sin2α2)+sinβ(sin2α2+cos2α2)

=tan1sinαcosβcosα+sinβ(1)

=tan1sinαcosβcosα+sinβ


Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon