wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that (2x+7) is a factor of 2x3+7x2-4x-14. Hence factorize 2x3+7x2-4x-14.


Open in App
Solution

Step- 1 Use the factor theorem:

If fx is a polynomial of n1and a is any real number, then x-a is a factor of fx if fa=0.

Let f(x)=2x3+7x2-4x-14.

If (2x+7) is a factor of f(x)=2x3+7x2-4x-14, then f-72 will be 0.

f-72=2(-72)3+7(-72)2-4(-72)-14

=-3434+3434+14-14
=0

Thus, (2x+7) is a factor of f(x)=2x3+7x2-4x-14.

Step- 2 Find the other factor by long division:

Divide f(x)=2x3+7x2-4x-14 by (2x+7) by using long division.
2x+7x2--22x3+7x2-4x-14
2x3+7x2---4x-14
-4x-14++0

Clearly we got, 2x3+7x2-4x-14=(2x+7)(x2-2).

Also, x2-2=(x+2)(x-2). Thus, 2x3+7x2-4x-14=(2x+7)(x-2)(x-2).

Hence, 2x+7 is a factor of 2x3+7x2-4x-14.and factorization of 2x3+7x2-4x-14=(2x+7)(x-2)(x-2).


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon