We use the standard factorisation:
x4+4y4=(x2+2xy+2y2)(x22xy+2y2).
We observe that for any integers x, y,
x2+2xy+2y2=(x+y)2+y2≥y2,
and x2−2xy+2y2=(x−y)2+y2≥y2,
We write 32008+42009=32008+4(42008)=(3502)4+4(4502)4.
Taking x=3502 and y=4502, we se that 32008+42009=ab, where
a≥(4502)2,b≥(4502)2.
But we have
(4502)2=22008>22002= (211)182>(2009)182........since 211=2048>2009.