Show that 3tan-1x=tan-1(3x-x3)(1-3x2)
To prove: 3tan-1x=tan-1(3x-x3)(1-3x2)
Let x=tanA
⇒tan-1x=A
R.H.S=tan-1(3x-x3)(1-3x2)
=tan-1(3tanA-tanA3)(1-3tanA2)
=tan-1(tan3A) [Identity used: tan-1(3tanθ-tanθ3)(1-3tanθ2)]
= 3A
=3tan-1A
From above it is clear that L.H.S=R.H.S
Thus,3tan-1x=tan-1(3x-x3)(1-3x2)
Ifx=213+223,Show that x3−6x=6.
If 2x=3y=12z,Show that 1z=1y+2x.
If f(x)=x3−1x3, show that f(x)+f(1x=0).