Suppose C represents the pints (4, 3). Let P, Q and R denote the points (9, 3), (7, -1) and (1, - 1) respectively. Using the distance formula
d=√(x2−x1)2+(y2−y1)2
we get
CP2=(9−4)2+(3−3)2=52=25
CQ2=(7−4)2+(−1−3)2=32+(−4)2=9+16=25
Cr2=(4−1)2+(3+1)2=32+42=9+16=25
So, CP2=CQ2=CR2=25 or CP=CQ=CR=5.
Hence, the points P, Q, R are on the circle with centre at (4, 3) and its radius is 5 units.