We have 9n+1=(1+8)n+1
=(n+1)C0+(n+1)C1(8)+(n+1)C2(8)2+ (n+1)C3(8)3+...+(n+1)Cn+1(8)n+1
=1+(n+1)×8+(n+1)C2(8)2+(n+1)C3(8)3+... +(n+1)Cn+1(8)n+1
=1+8n+8+(n+1)C2(8)2+(n+1)C3(8)3+... +(n+1)Cn+1(8)n+1
∴9n+1−8n−9
=n+1C2(8)2+n+1C3(8)3+...+n+1Cn+1(8)n+1
=64[(n+1)C2+(n+1)C3.8+...+(n+1)Cn+1.8n+1]
which shows that 9n+1−8n−9 is divisible by 64.