wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that a3cos(BC)+b3(CA)+c3cos(AB)=3abc.

Open in App
Solution

a3cos(BC)+b3cos(CA)+c3cos(AB)

= k3sin3Acos(BC)+k3sin3Bcos(CA)+k3(AB)

=k3[sin2Asin(B+C)cos(BC)+sin2Csin(A+B)cos(AB)]

=12k3[sin2A(sin2B+sin2C)+sin2B(sin2C+sin2A)+sin2C(sin2A+sin2B)]

= k3[sinAsinBcosB+sin2AsinCcosC+sin2BsinCcosC+sin2BsinAcosA+sin2CsinAcosA+sinAcosB]

= k3[sinAsinB(sinAcosB+cosAsinB)+sinBsinC(sinBcosC+cosBsinC)+sinCsinA(sinCsinA(sinCcosA+cosCsinA)]

=k3[sinAsinBsin(A+B)+sinBsinCsin(B+C)+sinCsinAsin(C+A)

=k3[sinAsinBsinC+sinBsinCsinA+sinCsinAsinB]

=3k3sinA.ksinB.ksinC=3abc.
LHS=RHS
Hence proof

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon