Show that |a|b+|b|a is perpendicular to |a|b−|b|a for any two non-zero vectors a and b.
Let p=|a|b+|b|a and q=|a|b−|b|a
Then, p.q=(|a|b+|b|a).(|a|b−|b|a)
=|a|2(b.b)−|a||b|(b.a)+|b||a|(a.b)−|b|2(a.a)
=|a|2|b|2−|a||b|(a.b)+|a||b|(a.b)−|b|2|a|2=0
⇒p⊥q (∵ if c.d = 0 ⇒ c is perpendicular to d)
Hence, |a| b + |b| a and |a| b - |b| a are perpendicular to each other for any two non-zero vectors a and b.