Show that A=[5 3−1 −2] satisfies the equation A2 - 3A - 7I = 0 and hence find the value of A−1.
We have A=[5 3−1 −2]
∴A2 = A. A =[5 3−1 −2][5 3−1 −2]
[25−3 15−6−5+2 −3+4]=[22 9−3 1]
3A = 3 [5 3−1 −2]=[15 9−3 −6]
and 7I = 7[1 00 1]=[7 00 7]
∴A2−3A−7I=[22 9−3 1]−[15 9−3 −6]−[7 00 7]
=[22−15−7 9−9−0−3+3−0 1+6+−7]
=[0 00 0]
=0
Since, A2 - 3A - 7I =0
⇒A−1[(A2)−3A−7I]=A−10
⇒A−1A.A−3A−1 A−7 A−1 I=0 [∵A−10=0]
⇒IA−3I−7A−1=0 [∵A−1A=I]
⇒A−3I−7A−1=0 [∵A−1 I=A−1]
⇒−7A−1=−A+3I
[−5 −31 2]+[3 00 3]=[−2 −31 5]
A−1=−17[−2 −31 5]