Show that all chords of the curve 3x2−y2−2x+4y=0, which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point.
Open in App
Solution
Let the chord be y=mx+c, So find OA×OB , where A and B are points of intersection of chord and circle , we use homogenisation.
⇒3x2−y2−2(x+2y)(y−mxc)=0
⇒3cx2−cy2−2(xy−mx2+2y2−2mxy)=0
⇒3cx2−cy2−2xy−2mx2−4y2+4mxy=0
⇒x2(3c−2m)−y2(c+4)+xy(4m−2)=0
∵OA and OB areat right angles
m1m2=ab=−1
⇒3c−2m−(c+4)=−1
⇒3−2m=c+4
⇒2c=2(m+2)
⇒c=m+2
Hence,chord is:
y=(mx+m+2)
This equation always satisfies (−1,2) irrespective of value of m. Hence the fixed point is (−1,2).