Consider F(x)=f(x)+f(−x)...(1)
F(−x)=f(−x)+f(x)=F(x)∴Even G(x)=f(x)−f(−x)...(2)
G(−x)=f(−x)−f(x)=−G(x)∴Odd.
Now F(x)+G(x)=2f(x)by(1)and(2) ∴f(x)=12[F(x)+G(x)]...(3) where F(x) is even G(x) is odd function of x.
For uniqueness : Let,if possible, there exist F1(x)(even)andG1(x)(odd) function of x such that f(x)=12[F1(x)+G1(x)]...(4)
Subtracting (3) and (4),we get 0=12[{F(x)−F1(x)}+{G(x)−G1(x)}]
∴F(x)−F1(x)=0andG(x)−G1(x)=0
∴F1(x)=F(x)andG1(x)=G(x)
Hence the expression is unique.