Step : Simplifying the LHS of given expression
Given expression:
(ama−n)m−n×(ana−l)n−l×(ala−m)l−m=1
Taking L.H.S of given expression, we have:
(ama−n)m−n×(ana−l)n−l×(ala−m)l−m=(am×an)m−n×(an×al)n−l×(al×am)l−m(∵1a−x=ax)=(am+n)(m−n)×(an+l)(n−l)×(al+m)(l−m)[∵am×an=am+n]
=a(m+n)(m−n)×a(n+l)(n−l)×a(l+m)(l−m)=am2−n2×an2−l2×al2−m2=am2−n2+n2−l2+l2−m2[∵ax×ay×az=ax+y+z]=a0=1
Hence proved.