∣∣
∣∣abcbcacab∣∣
∣∣=−∣∣
∣∣acbbaccba∣∣
∣∣=∣∣
∣∣−acb−bac−cba∣∣
∣∣
So ∣∣
∣∣abcbcacab∣∣
∣∣⋅∣∣
∣∣abcbcacab∣∣
∣∣=∣∣
∣∣−acb−bac−cba∣∣
∣∣⋅∣∣
∣∣abcbcacab∣∣
∣∣
As detA.detB=det(AB) for two matrices
Here AB=⎡⎢⎣−acb−bac−cba⎤⎥⎦⋅⎡⎢⎣abcbcacab⎤⎥⎦
=⎡⎢
⎢⎣−a.a+bc+bc−ab+c2+ab−ac+ac+b2−ba+ba+c2−b2+ac+ac−bc+c2+bc−ca+b2+ac−bc+bc+c2−c2+ab+ab⎤⎥
⎥⎦=⎡⎢
⎢⎣2bc−a2c2b2c22ac−b2a2b2a22ab−c2⎤⎥
⎥⎦
So |AB|=|A|.|B|$
ie ∣∣
∣
∣∣2bc−a2c2b2c22ac−b2a2b2a22ab−c2∣∣
∣
∣∣=∣∣
∣∣abcbcacab∣∣
∣∣∣∣
∣∣−acb−bac−cba∣∣
∣∣
∣∣
∣
∣∣2bc−a2c2b2c22ac−b2a2b2a22ab−c2∣∣
∣
∣∣=∣∣
∣∣abcbcacab∣∣
∣∣∣∣
∣∣abcbcacab∣∣
∣∣
∣∣
∣
∣∣2bc−a2c2b2c22ac−b2a2b2a22ab−c2∣∣
∣
∣∣=∣∣
∣∣abcbcacab∣∣
∣∣2
∣∣
∣∣abcbcacab∣∣
∣∣=a(bc−a2)−b(b2−ac)+c(ab−c2)
∣∣
∣∣abcbcacab∣∣
∣∣=3abc−a3−b3−c3
∣∣
∣∣abcbcacab∣∣
∣∣2=(a3+b3+c3−3abc)2
∣∣
∣
∣∣2bc−a2c2b2c22ac−b2a2b2a22ab−c2∣∣
∣
∣∣=∣∣
∣∣abcbcacab∣∣
∣∣2=(a3+b3+c3−3abc)2