Given:
D=∣∣
∣
∣∣x22x11x22x2x1x2∣∣
∣
∣∣Apply R1→R1+R2+R3
∣∣
∣
∣∣x2+2x+1x2+2x+1x2+2x+11x22x2x1x2∣∣
∣
∣∣
Take x2+2x+1 as common , we get
=(x2+2x+1)∣∣
∣
∣∣1111x22x2x1x2∣∣
∣
∣∣
Solving the determinant,
=(x2+2x+1)[(x4−2x)−(x2−4x2)+(1−2x3)]
=(x2+2x+1)[(x4−2x)−(x2−4x2)+(1−2x3)]
=(x2+2x+1)(x4−2x3+3x2−2x+1)
=(x2+2x+1)(x4+1+x2+2x2−2x−2x3)
Using (a−b−c)2=a2+b2+c2+2ab−2bc−2ac
D=(x+1)2(x2+1−x)2, which is a perfect square.
Hence proved.